Eur. Phys. J. B 57, 219-224 (2007)
DOI: 10.1140/epjb/e2007-00122-7

THE EUROPEAN
PHYSICAL JOURNAL B

Relaxation in statistical many-agent economy models

M. Patriarca®®, A. Chakraborti®?, E. Heinsalu ¢, and G. Germano® 4

! Institute of Theoretical Physics, Tartu University, Téhe 4, 51010 Tartu, Estonia
2 Department of Physics, Banaras Hindu University, Varanasi-221005, India
3 Department of Chemistry, Philipps-University Marburg, 35032 Marburg, Germany

Received 31 August 2006 / Received in final form 12 December 2006
Published online 11 May 2007 — (© EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2007

Abstract. We review some statistical many-agent models of economic and social systems inspired by mi-
croscopic molecular models and discuss their stochastic interpretation. We apply these models to wealth
exchange in economics and study how the relaxation process depends on the parameters of the system, in
particular on the saving propensities that define and diversify the agent profiles.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management — 87.23.Ge
Dynamics of social systems — 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

One might question how theories that try to explain
the physical world of elementary particles, atoms, and
molecules can be applied to understand the social struc-
ture in its complexity and the economic behavior of human
beings: is it possible to describe the behavior of people
with simple models? Is it even possible to identify and
quantify the nature of the interactions between them?
Even though it is still difficult to find answers to these
questions, during the past decade physicists have made at-
tempts to study problems related to economics, the social
science that seeks to analyze and describe the production,
distribution, and consumption of wealth [1].

Here we will not try to review all these attempts, rather
we briefly describe what we name statistical many-agent
models. In these models, economic activity is described
as a flow of wealth between basic units, referred to as
agents, representing e.g. individuals or companies. Each
of the N agents {1, 2, ..., 4, ..., N} has a wealth z;,
that changes in time as agents exchange wealth between
each other, according to the trading rules detailed in Sec-
tion 2. These underlying trading rules only depend on one
set of parameters, namely the saving propensities {\;},
with 0 < \; < 1. Statistical many-agent models describe
closed economy systems and can reproduce some features
of wealth distributions, such as an exponential at interme-
diate values of wealth and a power law at high values. In
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a particular model, all agents have the same global A; in a
more general model, different agents have different values
of \.

If the saving propensity is equal for all the units (global
saving propensity models), A; = A, the equilibrium wealth
density f(x) is given by a I'-distribution,

F(2) = Bra(Br) = %(ﬂ@"‘l exp(—fz), (1)
D 1+ 2\

2 1—A

. (2)

Here n is a real number in the interval [1, 00) and D = 2n
can be considered as the effective dimension of the sys-
tem: in fact the distribution ~,,(8z) is just the Maxwell-
Boltzmann distribution for the kinetic energy z of a
gas in thermal equilibrium at a temperature 8! in a
D-dimensional space. Thus the parameter § can be in-
terpreted as the inverse temperature: consistently with
the equipartition theorem, 37! = 2(x)/D = (z)/n, where
the constant (x) is the average wealth () = X/N and
X = vazl x; is the total wealth. In an economic system,
temperature is proportional to the fluctuations of wealth
around its average value. The model with a single global
saving propensity describes well wealth distributions at
intermediate values of x, but cannot predict power laws
at large x.

If A is uniformly distributed among the agents accord-
ing to a given density ¢(X) (distributed saving propensity
models), then one finds, under quite general conditions
on the shape of ¢()), an exponential law at intermediate
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Fig. 1. Analogy between the minimal closed pure exchange
economic model and a classical isolated system of an ideal gas.
In the latter case particles undergo random elastic collisions
and exchange a fraction of their kinetic energy, while in the
closed economy model agents perform random trades with each
other and exchange a fraction of their wealth according to some
statistical rule.

values of x and a robust Pareto law,

fla) ™™, (3)

with « > 1, at large x. This power law was suggested by
Vilfredo Pareto [2] more than a century ago to describe
the tail of wealth distributions and is usually found to be
characterized across various countries by a Pareto expo-
nent a &~ 3/2.

The basic exchange laws underlying some of these
models are reviewed in Section 2. In Section 3 we focus on
the relaxation to equilibrium generated by the exchange
laws of models with uniformly distributed A and illustrate
its dependence on the saving propensity A through some
examples. We also consider the corresponding relaxation
time distributions and discuss the relation between the
Pareto exponent and the relaxation behavior of the sys-
tem. Results are summarized in Section 4.

2 Many-agent models of a closed pure
exchange economy

Our aim is to study a general many-agent statistical model
of a closed economy without growth (analogous to the ki-
netic theory model of ideal gases, see Fig. 1), where N
agents exchange a quantity x, that we have defined as
wealth. The states of the agents are specified only by
the wealths {x;}, while the total wealth X = Zivzl Z;
is conserved. The evolution of the system is carried out
according to the following algorithm: at every time step
two agents ¢ and j are chosen randomly and an amount of
wealth Ax is exchanged, so that the agent wealths z and
:L'; after the transaction are
!/

x; = x; — Az,

o = x; + Ax. (4)
Different transaction rules have been studied analytically
or numerically by various authors and are summarized

here below.
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2.1 Basic model without saving: Boltzmann
distribution

A stochastic trading rule, that redistributes the wealths
of two agents randomly, was introduced in reference [3],

z; = €(z; + ;) (5)

where € is a uniform random number in (0, 1) and e+é = 1.
Equations (5) are equivalent to the trading rule of equa-
tion (4) if Az = €x; —ex;. In another version of the model,
the money difference Ax is assumed to have a constant
value independent of the two trading agents [4-6], i.e.
Axr = Axg. Both these forms for Az lead to a robust
equilibrium Boltzmann (or Gibbs) distribution,

f(z) = 67" exp(—pz), (6)
with effective temperature =1 = (z) = X/N [3-6].

2.2 Model with a global saving propensity: gamma
distribution

Introducing a saving criterion through a saving propensity
parameter 0 < A < 1 [7,8] modifies the trading rule as
follows:

zp = Az + (1 — M) (@ + xj),
oy = Ay + €1 = N) (i + x). (7)

This model is similar to that introduced by John Angle
in 1983 on the basis of the Surplus Theory [9-11], which
however differs both in the mathematical definition of the
exchange rule and interpretation [11]. A closer compari-
son will be studied elsewhere, while here, for the sake of
simplicity, we will focus on the trading rule (7) and some
of its generalizations for studying the relaxation process.
The rule of equation (7) corresponds to the process defined
by equation (4) if

Az = (1 — M) (ex; — ex;j). (8)

The parameter A\ represents the fraction of wealth saved
before the reshuffling takes place. The resulting equilib-
rium distribution is qualitatively different from a simple
exponential function, being a I'-distribution [12,13], see
equation (1), that has a mode z,, > 0 and a zero limit for
x — 0, see Figure 2.

2.3 Models with a continuous distribution of saving
propensities

More realistic and interesting models are obtained when
agents ¢ = 1, ..., N are diversified by assigning them
different saving propensities A; [14-21], e.g. with the \;
distributed uniformly on the interval [0,1). The trading
rule is then

zp = Nwi +€[(1— Nz + (1 — X)),
o = Njzj + e((1 = No)zi + (1 = Aj)zj], )
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Fig. 2. Wealth probability density in linear (left) and semi-log (right) scale for various global saving propensities A. The
exponential curve A\ = 0 is the equilibrium solution for the basic model (Sect. 2.1), while the other curves correspond to a

nonzero global saving propensity (Sect. 2.2).

or, equivalently, can be formulated through equation (4)
with Ax given by

Az = E(l - )\Z)Iz - 6(1 — )\j)xj. (10)
Numerical simulations and theoretical considerations sug-
gest that these models relax toward a robust power law
o 1/x'*® with a Pareto exponent a = 1 in the case of
uniformly distributed A and with « > 1 if the A-density
d(\) — 0as p(A\) ~ (1—=X)*"! for A — 1. In the following
we study the relaxation process of models with uniformly
distributed .

3 Relaxation process

If a real economic system is characterized by a wealth
distribution with a certain shape, it is of great interest to
know on which time scale the system relaxes toward this
distribution from a given arbitrary initial distribution of
wealth, and how the relaxation process depends on the
system parameters, in particular on the system size and
the distribution of saving propensities.

In the simulations presented below, all agents start
from the same initial wealth z;(t = 0) = z¢p = 1. The
value xg, due to the conservation of the total wealth X =
Z?]:l x;, also represents the global average value of = at
any time ¢, i.e. (z(t)) = [xf(z)dz = xo = X/N. This
setup is used to model a more general situation where the
initial conditions of the agents are far from equilibrium.

3.1 Relaxation to equilibrium as a function
of system size

Before analyzing the dependence of the time scale on the
saving propensity distribution, we shortly consider its de-
pendence on the number of agents N. If time is measured
by the number of transactions T, we find that the time
scale is proportional to the number of agents N: a system
A that is m times larger than a system B (Np = mNg)
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Fig. 3. Average wealth (z(t))x=0.99 versus the rescaled time
t = T/N for systems with different number of agents N =
100, 1000, and 10000, but the same saving propensity density
@()\), that uniformly partitions agents into 100 subsets with
A =0.00, 0.01, ..., 0.99. T is the total number of trades.

relaxes m times slower than B. This is shown in Figure 3,
where the average wealth (z(t)) of the agent subset with
A = 0.99 is plotted for various systems with different val-
ues of N versus the rescaled time ¢ = T/N. However,
the A-density ¢(\) is the same for all systems and uni-
formly partitions each system into 100 subsets with values
A =0.00, 0.01, ..., 0.99.

Here and in the following we define time ¢ as the ra-
tio t = T/N between the total number of trades T" and
the total number of agents IV, i.e. what is usually called a
Monte Carlo cycle or sweep in molecular simulation [22]:
in a Monte Carlo cycle, each agent performs on average
the same number of trades (actually two), in the same
fashion as in molecular dynamics each particle is moved
once at every time step. The results will not change if one
of the two agents involved in an exchange is selected se-
quentially, e.g. in the order of its index i =1, ..., N, as
is common practice in molecular simulations. This ensures
that every agent performs at least one trade per cycle and
reduces the amount of random numbers to be drawn. The
previous considerations suggest the introduction of a time



222

unit 79, such that during any time interval (¢,¢ + 79) all
agents perform on average one trade (or the same number
of trades). In this way the dynamics and the relaxation
process become independent of V. The existence of a nat-
ural time scale independent of the system size provides
a foundation for using simulations of systems with finite
N in order to infer properties of systems with continuous
saving propensity distributions and N — oc.

3.2 Relaxation to equilibrium as a function of saving
propensity

Relaxation in systems with constant A has already been
studied in reference [7], where a systematic increase of the
relaxation time with A\, and eventually a divergence for
A — 1, was found: for A = 1, no exchanges can occur,
so that the system is frozen. Here we consider systems
with uniformly distributed A. In this case a similar be-
havior of the relaxation times is observed, broken down to
subsystems with similar values of A. As discussed in detail
in references [21,23,24], the partial wealth distributions of
agents with a given value of A relax toward different states
with characteristic shapes fi(x). The generic function
fa(x) has a maximum and an exponential tail, thus closely
recalling the shape of a I'-distribution. The corresponding
average value is given by (z)x = [z fi(z)dx = k/(1 — A),
where k is a suitable constant determined through the con-
dition [(z)x¢(A\)d\ = X/N; X is the total wealth of the
system. Even if the partial distributions decay exponen-
tially with x, the sum of all partial distributions results in
a Pareto law at large values of z, i.e. f(z) =, fa(x) ~
1/x'*%, Numerical simulations clearly show that agents
with different values of A are associated to different relax-
ation times 7).

Results are illustrated in Figure 4 for a system of
N = 10* agents uniformly partitioned into 100 subsets
with A = 0.01, 0.02, ..., 0.99: mean wealths of subsets
corresponding to a value of A closer to 1 relax slower to-
ward their asymptotic average wealth (x) o< 1/(1 — ).

The average wealth zy allows to introduce a thresh-
old that partitions the system into poor agents, with an
asymptotic average wealth (z(t — o0))x < xg, and rich
agents with (x(t — 00))x > xo. The poor-rich thresh-
old (x) = zop = 1 is represented as a continuous line in
Figure 4 and corresponds to A = 0.75 for this particular
example.

The differences in the relaxation process can be re-
lated to the different relative wealth exchange rates, that
by direct inspection of equations (9) and (10) appear to
be proportional to 1 — A. Thus, in general, higher saving
propensities are expected to be associated to slower relax-
ation processes. A more detailed analysis can be carried
out as shown in Figure 5: after the rescaling of time and
wealth by the factor (1 — \), mean wealths corresponding
to agents with different values of A (Fig. 5, left) appear to
relax approximately on the same time scale and toward
the same asymptotic value (Fig. 5, right). In fact, the fac-
tor (1 — A) is proportional to the wealth exchange rates
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Fig. 4. Mean wealth (z(¢))x versus time for various A. The
10* agents are uniformly partitioned into 100 subsets with A =
0.01, 0.02, ..., 0.99. Higher A correspond to longer relaxation
times. The continuous line (x) = xo partitions agents into poor
(z < zo) and rich (x > xo) ones.

and, at the same time, through the condition of station-
arity, determines the equilibrium average wealth values
(x)x = k/(1 — A) [21]. Agents start from the same ini-
tial condition z;(t = 0) = xg = 1. In this case, in order
to study in greater detail the high saving propensity pa-
rameter region, that corresponds to the high relaxation
time region, the system of N = 10* agents has been uni-
formly partitioned into 200 subsets with saving propensi-
ties A = 0.5000, 0.5025, ..., 0.9975. Actually, this is not
a uniform distribution of A on [0, 1), since ¢(A) = 0 for
A < 0.5, however it does not matter because what counts
is the high saving propensity parameter interval.

3.3 Relaxation time distribution

The model with distributed saving propensities is com-
pletely specified by the trading rules of equations (9) and
the set of saving propensities {\;} of the N agents. In
the case of a continuously distributed A, a continuous sav-
ing propensity density ¢(A) can be used in place of the
discrete A-set, normalized so that fol d(AN)dA = 1.

Here we suggest a method to obtain the wealth as
well as the relaxation distribution directly from the sav-
ing propensity density ¢(A). It follows from probability
conservation that f(Z)dz = ¢(\)d\, where Z is a short
notation for (z)y and f(Z) is the density of the average
wealth values. In the case of uniformly distributed saving
propensities, one obtains

fo)=om e —o(1-2) &

(11)

dz T
This shows that a uniform saving propensity distribution
leads to a power law f(Z) ~ 1/Z? in the (average) wealth
distribution. In general a A-density going to zero for A — 1
as ¢(A) oc (1 =Nt (with a > 1) leads to the Pareto law

f(x) ~ 1/z'T® with Pareto exponent o > 1 as found in
real distributions.
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Fig. 5. Left: average wealth (x(t))x versus (log of) time for the \’s listed in the figure. The 10* agents are partitioned into 200

subsets with A = 0.5000, 0.5025, ..

., 0.9975. Right: same as in the left figure after rescaling wealth and time by the factor

(1 — A), inversely proportional to the mean wealth and proportional to the average wealth exchange rate.

In a very similar way it is possible to obtain straight-
forwardly the associated distribution of relaxation times
(1) for the global relaxation process through the rela-
tion between the relaxation time 7, and the agent saving
propensity: given that the time scale follows a relation

x & 1/(1 — A), then
7_/ 7_/
A7) I
dr O<¢< T>72’

where 7' is a proportionality factor. Comparison with
equation (11) shows that ¢(7) and f(Z) are character-
ized by power law tails in 7 and Z respectively with the
same Pareto exponent.

It is to be noticed, as discussed in reference [21], that
in the parameter region A — 1, from which the main con-
tributions to the Pareto power law tail come, the widths of
the generic equilibrium partial distributions fy(z) increase
more slowly than the difference between the mean values
(x)xr — (x)a corresponding to two agents with consecutive
values of the saving propensity A and A. This implies that
at equilibrium and in the tail of the distribution it is pos-
sible to resolve the mixture ), fi(x) into its components
fa(x) and to approximate the current value of wealth z(t)
of a certain agent with saving propensity A (that is actu-
ally a stochastic process) with the corresponding average
value, (z) = x, so that f(x) = f(z).

Finally we notice that an ensemble with a power law
distribution of relaxation times undergoes a slow relax-
ation process if the exponent of the relaxation time dis-
tribution is smaller than two, so that a Pareto exponent
larger than two, as automatically generated by the model,
seems to ensure a normal relaxation.

(12)

/

4 Conclusions

The relaxation process of statistical many-agent models
of a closed pure exchange economy, where trading is de-
scribed as a flux of wealth between different agents, has
been found to be slower for agents with a larger saving

propensity parameter A\, who are also the agents resulting
richer at equilibrium. For a uniform A-distribution, the re-
laxation time is 7 o< 1/(1 — A). Furthermore, a smooth
distribution of saving propensities leads to distributions of
wealth and of relaxation times characterized by power law
tails with the same Pareto exponent o > 1, which ensures
a fast relaxation toward equilibrium.

We also remark that if time is measured in Monte
Carlo cycles, i.e. the ratio between the total number of
trades and the total number of agents, so that every agent
performs on average two trades during a cycle, the time
evolution and the relaxation process are independent of
the system size, thus providing information on arbitrarily
large systems.
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